Skip to content

Client

frauddetector R Documentation

Amazon Fraud Detector

Description

This is the Amazon Fraud Detector API Reference. This guide is for developers who need detailed information about Amazon Fraud Detector API actions, data types, and errors. For more information about Amazon Fraud Detector features, see the Amazon Fraud Detector User Guide.

We provide the Query API as well as AWS software development kits (SDK) for Amazon Fraud Detector in Java and Python programming languages.

The Amazon Fraud Detector Query API provides HTTPS requests that use the HTTP verb GET or POST and a Query parameter Action. AWS SDK provides libraries, sample code, tutorials, and other resources for software developers who prefer to build applications using language-specific APIs instead of submitting a request over HTTP or HTTPS. These libraries provide basic functions that automatically take care of tasks such as cryptographically signing your requests, retrying requests, and handling error responses, so that it is easier for you to get started. For more information about the AWS SDKs, go to Tools to build on AWS page, scroll down to the SDK section, and choose plus (+) sign to expand the section.

Usage

frauddetector(
  config = list(),
  credentials = list(),
  endpoint = NULL,
  region = NULL
)

Arguments

config

Optional configuration of credentials, endpoint, and/or region.

  • credentials:

    • creds:

      • access_key_id: AWS access key ID

      • secret_access_key: AWS secret access key

      • session_token: AWS temporary session token

    • profile: The name of a profile to use. If not given, then the default profile is used.

    • anonymous: Set anonymous credentials.

  • endpoint: The complete URL to use for the constructed client.

  • region: The AWS Region used in instantiating the client.

  • close_connection: Immediately close all HTTP connections.

  • timeout: The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds.

  • s3_force_path_style: Set this to true to force the request to use path-style addressing, i.e. ⁠http://s3.amazonaws.com/BUCKET/KEY⁠.

  • sts_regional_endpoint: Set sts regional endpoint resolver to regional or legacy https://docs.aws.amazon.com/sdkref/latest/guide/feature-sts-regionalized-endpoints.html

credentials

Optional credentials shorthand for the config parameter

  • creds:

    • access_key_id: AWS access key ID

    • secret_access_key: AWS secret access key

    • session_token: AWS temporary session token

  • profile: The name of a profile to use. If not given, then the default profile is used.

  • anonymous: Set anonymous credentials.

endpoint

Optional shorthand for complete URL to use for the constructed client.

region

Optional shorthand for AWS Region used in instantiating the client.

Value

A client for the service. You can call the service's operations using syntax like svc$operation(...), where svc is the name you've assigned to the client. The available operations are listed in the Operations section.

Service syntax

svc <- frauddetector(
  config = list(
    credentials = list(
      creds = list(
        access_key_id = "string",
        secret_access_key = "string",
        session_token = "string"
      ),
      profile = "string",
      anonymous = "logical"
    ),
    endpoint = "string",
    region = "string",
    close_connection = "logical",
    timeout = "numeric",
    s3_force_path_style = "logical",
    sts_regional_endpoint = "string"
  ),
  credentials = list(
    creds = list(
      access_key_id = "string",
      secret_access_key = "string",
      session_token = "string"
    ),
    profile = "string",
    anonymous = "logical"
  ),
  endpoint = "string",
  region = "string"
)

Operations

batch_create_variable
Creates a batch of variables
batch_get_variable
Gets a batch of variables
cancel_batch_import_job
Cancels an in-progress batch import job
cancel_batch_prediction_job
Cancels the specified batch prediction job
create_batch_import_job
Creates a batch import job
create_batch_prediction_job
Creates a batch prediction job
create_detector_version
Creates a detector version
create_list
Creates a list
create_model
Creates a model using the specified model type
create_model_version
Creates a version of the model using the specified model type and model id
create_rule
Creates a rule for use with the specified detector
create_variable
Creates a variable
delete_batch_import_job
Deletes the specified batch import job ID record
delete_batch_prediction_job
Deletes a batch prediction job
delete_detector
Deletes the detector
delete_detector_version
Deletes the detector version
delete_entity_type
Deletes an entity type
delete_event
Deletes the specified event
delete_events_by_event_type
Deletes all events of a particular event type
delete_event_type
Deletes an event type
delete_external_model
Removes a SageMaker model from Amazon Fraud Detector
delete_label
Deletes a label
delete_list
Deletes the list, provided it is not used in a rule
delete_model
Deletes a model
delete_model_version
Deletes a model version
delete_outcome
Deletes an outcome
delete_rule
Deletes the rule
delete_variable
Deletes a variable
describe_detector
Gets all versions for a specified detector
describe_model_versions
Gets all of the model versions for the specified model type or for the specified model type and model ID
get_batch_import_jobs
Gets all batch import jobs or a specific job of the specified ID
get_batch_prediction_jobs
Gets all batch prediction jobs or a specific job if you specify a job ID
get_delete_events_by_event_type_status
Retrieves the status of a DeleteEventsByEventType action
get_detectors
Gets all detectors or a single detector if a detectorId is specified
get_detector_version
Gets a particular detector version
get_entity_types
Gets all entity types or a specific entity type if a name is specified
get_event
Retrieves details of events stored with Amazon Fraud Detector
get_event_prediction
Evaluates an event against a detector version
get_event_prediction_metadata
Gets details of the past fraud predictions for the specified event ID, event type, detector ID, and detector version ID that was generated in the specified time period
get_event_types
Gets all event types or a specific event type if name is provided
get_external_models
Gets the details for one or more Amazon SageMaker models that have been imported into the service
get_kms_encryption_key
Gets the encryption key if a KMS key has been specified to be used to encrypt content in Amazon Fraud Detector
get_labels
Gets all labels or a specific label if name is provided
get_list_elements
Gets all the elements in the specified list
get_lists_metadata
Gets the metadata of either all the lists under the account or the specified list
get_models
Gets one or more models
get_model_version
Gets the details of the specified model version
get_outcomes
Gets one or more outcomes
get_rules
Get all rules for a detector (paginated) if ruleId and ruleVersion are not specified
get_variables
Gets all of the variables or the specific variable
list_event_predictions
Gets a list of past predictions
list_tags_for_resource
Lists all tags associated with the resource
put_detector
Creates or updates a detector
put_entity_type
Creates or updates an entity type
put_event_type
Creates or updates an event type
put_external_model
Creates or updates an Amazon SageMaker model endpoint
put_kms_encryption_key
Specifies the KMS key to be used to encrypt content in Amazon Fraud Detector
put_label
Creates or updates label
put_outcome
Creates or updates an outcome
send_event
Stores events in Amazon Fraud Detector without generating fraud predictions for those events
tag_resource
Assigns tags to a resource
untag_resource
Removes tags from a resource
update_detector_version
Updates a detector version
update_detector_version_metadata
Updates the detector version's description
update_detector_version_status
Updates the detector version’s status
update_event_label
Updates the specified event with a new label
update_list
Updates a list
update_model
Updates model description
update_model_version
Updates a model version
update_model_version_status
Updates the status of a model version
update_rule_metadata
Updates a rule's metadata
update_rule_version
Updates a rule version resulting in a new rule version
update_variable
Updates a variable

Examples

## Not run: 
svc <- frauddetector()
svc$batch_create_variable(
  Foo = 123
)

## End(Not run)