Client
frauddetector | R Documentation |
Amazon Fraud Detector¶
Description¶
This is the Amazon Fraud Detector API Reference. This guide is for developers who need detailed information about Amazon Fraud Detector API actions, data types, and errors. For more information about Amazon Fraud Detector features, see the Amazon Fraud Detector User Guide.
We provide the Query API as well as AWS software development kits (SDK) for Amazon Fraud Detector in Java and Python programming languages.
The Amazon Fraud Detector Query API provides HTTPS requests that use the
HTTP verb GET or POST and a Query parameter Action
. AWS SDK provides
libraries, sample code, tutorials, and other resources for software
developers who prefer to build applications using language-specific APIs
instead of submitting a request over HTTP or HTTPS. These libraries
provide basic functions that automatically take care of tasks such as
cryptographically signing your requests, retrying requests, and handling
error responses, so that it is easier for you to get started. For more
information about the AWS SDKs, go to Tools to build on
AWS page, scroll down to the
SDK section, and choose plus (+) sign to expand the section.
Usage¶
Arguments¶
config
Optional configuration of credentials, endpoint, and/or region.
credentials:
creds:
access_key_id: AWS access key ID
secret_access_key: AWS secret access key
session_token: AWS temporary session token
profile: The name of a profile to use. If not given, then the default profile is used.
anonymous: Set anonymous credentials.
endpoint: The complete URL to use for the constructed client.
region: The AWS Region used in instantiating the client.
close_connection: Immediately close all HTTP connections.
timeout: The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds.
s3_force_path_style: Set this to
true
to force the request to use path-style addressing, i.e.http://s3.amazonaws.com/BUCKET/KEY
.sts_regional_endpoint: Set sts regional endpoint resolver to regional or legacy https://docs.aws.amazon.com/sdkref/latest/guide/feature-sts-regionalized-endpoints.html
credentials
Optional credentials shorthand for the config parameter
creds:
access_key_id: AWS access key ID
secret_access_key: AWS secret access key
session_token: AWS temporary session token
profile: The name of a profile to use. If not given, then the default profile is used.
anonymous: Set anonymous credentials.
endpoint
Optional shorthand for complete URL to use for the constructed client.
region
Optional shorthand for AWS Region used in instantiating the client.
Value¶
A client for the service. You can call the service's operations using
syntax like svc$operation(...)
, where svc
is the name you've
assigned to the client. The available operations are listed in the
Operations section.
Service syntax¶
svc <- frauddetector(
config = list(
credentials = list(
creds = list(
access_key_id = "string",
secret_access_key = "string",
session_token = "string"
),
profile = "string",
anonymous = "logical"
),
endpoint = "string",
region = "string",
close_connection = "logical",
timeout = "numeric",
s3_force_path_style = "logical",
sts_regional_endpoint = "string"
),
credentials = list(
creds = list(
access_key_id = "string",
secret_access_key = "string",
session_token = "string"
),
profile = "string",
anonymous = "logical"
),
endpoint = "string",
region = "string"
)
Operations¶
- batch_create_variable
- Creates a batch of variables
- batch_get_variable
- Gets a batch of variables
- cancel_batch_import_job
- Cancels an in-progress batch import job
- cancel_batch_prediction_job
- Cancels the specified batch prediction job
- create_batch_import_job
- Creates a batch import job
- create_batch_prediction_job
- Creates a batch prediction job
- create_detector_version
- Creates a detector version
- create_list
- Creates a list
- create_model
- Creates a model using the specified model type
- create_model_version
- Creates a version of the model using the specified model type and model id
- create_rule
- Creates a rule for use with the specified detector
- create_variable
- Creates a variable
- delete_batch_import_job
- Deletes the specified batch import job ID record
- delete_batch_prediction_job
- Deletes a batch prediction job
- delete_detector
- Deletes the detector
- delete_detector_version
- Deletes the detector version
- delete_entity_type
- Deletes an entity type
- delete_event
- Deletes the specified event
- delete_events_by_event_type
- Deletes all events of a particular event type
- delete_event_type
- Deletes an event type
- delete_external_model
- Removes a SageMaker model from Amazon Fraud Detector
- delete_label
- Deletes a label
- delete_list
- Deletes the list, provided it is not used in a rule
- delete_model
- Deletes a model
- delete_model_version
- Deletes a model version
- delete_outcome
- Deletes an outcome
- delete_rule
- Deletes the rule
- delete_variable
- Deletes a variable
- describe_detector
- Gets all versions for a specified detector
- describe_model_versions
- Gets all of the model versions for the specified model type or for the specified model type and model ID
- get_batch_import_jobs
- Gets all batch import jobs or a specific job of the specified ID
- get_batch_prediction_jobs
- Gets all batch prediction jobs or a specific job if you specify a job ID
- Retrieves the status of a DeleteEventsByEventType action
- get_detectors
- Gets all detectors or a single detector if a detectorId is specified
- get_detector_version
- Gets a particular detector version
- get_entity_types
- Gets all entity types or a specific entity type if a name is specified
- get_event
- Retrieves details of events stored with Amazon Fraud Detector
- get_event_prediction
- Evaluates an event against a detector version
- get_event_prediction_metadata
- Gets details of the past fraud predictions for the specified event ID, event type, detector ID, and detector version ID that was generated in the specified time period
- get_event_types
- Gets all event types or a specific event type if name is provided
- get_external_models
- Gets the details for one or more Amazon SageMaker models that have been imported into the service
- get_kms_encryption_key
- Gets the encryption key if a KMS key has been specified to be used to encrypt content in Amazon Fraud Detector
- get_labels
- Gets all labels or a specific label if name is provided
- get_list_elements
- Gets all the elements in the specified list
- get_lists_metadata
- Gets the metadata of either all the lists under the account or the specified list
- get_models
- Gets one or more models
- get_model_version
- Gets the details of the specified model version
- get_outcomes
- Gets one or more outcomes
- get_rules
- Get all rules for a detector (paginated) if ruleId and ruleVersion are not specified
- get_variables
- Gets all of the variables or the specific variable
- list_event_predictions
- Gets a list of past predictions
- list_tags_for_resource
- Lists all tags associated with the resource
- put_detector
- Creates or updates a detector
- put_entity_type
- Creates or updates an entity type
- put_event_type
- Creates or updates an event type
- put_external_model
- Creates or updates an Amazon SageMaker model endpoint
- put_kms_encryption_key
- Specifies the KMS key to be used to encrypt content in Amazon Fraud Detector
- put_label
- Creates or updates label
- put_outcome
- Creates or updates an outcome
- send_event
- Stores events in Amazon Fraud Detector without generating fraud predictions for those events
- tag_resource
- Assigns tags to a resource
- untag_resource
- Removes tags from a resource
- update_detector_version
- Updates a detector version
- update_detector_version_metadata
- Updates the detector version's description
- update_detector_version_status
- Updates the detector version’s status
- update_event_label
- Updates the specified event with a new label
- update_list
- Updates a list
- update_model
- Updates model description
- update_model_version
- Updates a model version
- update_model_version_status
- Updates the status of a model version
- update_rule_metadata
- Updates a rule's metadata
- update_rule_version
- Updates a rule version resulting in a new rule version
- update_variable
- Updates a variable