Start Trained Model Inference Job
cleanroomsml_start_trained_model_inference_job | R Documentation |
Defines the information necessary to begin a trained model inference job¶
Description¶
Defines the information necessary to begin a trained model inference job.
Usage¶
cleanroomsml_start_trained_model_inference_job(membershipIdentifier,
name, trainedModelArn, configuredModelAlgorithmAssociationArn,
resourceConfig, outputConfiguration, dataSource, description,
containerExecutionParameters, environment, kmsKeyArn, tags)
Arguments¶
membershipIdentifier |
[required] The membership ID of the membership that contains the trained model inference job. |
name |
[required] The name of the trained model inference job. |
trainedModelArn |
[required] The Amazon Resource Name (ARN) of the trained model that is used for this trained model inference job. |
configuredModelAlgorithmAssociationArn |
The Amazon Resource Name (ARN) of the configured model algorithm association that is used for this trained model inference job. |
resourceConfig |
[required] Defines the resource configuration for the trained model inference job. |
outputConfiguration |
[required] Defines the output configuration information for the trained model inference job. |
dataSource |
[required] Defines the data source that is used for the trained model inference job. |
description |
The description of the trained model inference job. |
containerExecutionParameters |
The execution parameters for the container. |
environment |
The environment variables to set in the Docker container. |
kmsKeyArn |
The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the ML inference job and associated data. |
tags |
The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define. The following basic restrictions apply to tags:
|
Value¶
A list with the following syntax:
list(
trainedModelInferenceJobArn = "string"
)
Request syntax¶
svc$start_trained_model_inference_job(
membershipIdentifier = "string",
name = "string",
trainedModelArn = "string",
configuredModelAlgorithmAssociationArn = "string",
resourceConfig = list(
instanceType = "ml.r7i.48xlarge"|"ml.r6i.16xlarge"|"ml.m6i.xlarge"|"ml.m5.4xlarge"|"ml.p2.xlarge"|"ml.m4.16xlarge"|"ml.r7i.16xlarge"|"ml.m7i.xlarge"|"ml.m6i.12xlarge"|"ml.r7i.8xlarge"|"ml.r7i.large"|"ml.m7i.12xlarge"|"ml.m6i.24xlarge"|"ml.m7i.24xlarge"|"ml.r6i.8xlarge"|"ml.r6i.large"|"ml.g5.2xlarge"|"ml.m5.large"|"ml.p3.16xlarge"|"ml.m7i.48xlarge"|"ml.m6i.16xlarge"|"ml.p2.16xlarge"|"ml.g5.4xlarge"|"ml.m7i.16xlarge"|"ml.c4.2xlarge"|"ml.c5.2xlarge"|"ml.c6i.32xlarge"|"ml.c4.4xlarge"|"ml.g5.8xlarge"|"ml.c6i.xlarge"|"ml.c5.4xlarge"|"ml.g4dn.xlarge"|"ml.c7i.xlarge"|"ml.c6i.12xlarge"|"ml.g4dn.12xlarge"|"ml.c7i.12xlarge"|"ml.c6i.24xlarge"|"ml.g4dn.2xlarge"|"ml.c7i.24xlarge"|"ml.c7i.2xlarge"|"ml.c4.8xlarge"|"ml.c6i.2xlarge"|"ml.g4dn.4xlarge"|"ml.c7i.48xlarge"|"ml.c7i.4xlarge"|"ml.c6i.16xlarge"|"ml.c5.9xlarge"|"ml.g4dn.16xlarge"|"ml.c7i.16xlarge"|"ml.c6i.4xlarge"|"ml.c5.xlarge"|"ml.c4.xlarge"|"ml.g4dn.8xlarge"|"ml.c7i.8xlarge"|"ml.c7i.large"|"ml.g5.xlarge"|"ml.c6i.8xlarge"|"ml.c6i.large"|"ml.g5.12xlarge"|"ml.g5.24xlarge"|"ml.m7i.2xlarge"|"ml.c5.18xlarge"|"ml.g5.48xlarge"|"ml.m6i.2xlarge"|"ml.g5.16xlarge"|"ml.m7i.4xlarge"|"ml.p3.2xlarge"|"ml.r6i.32xlarge"|"ml.m6i.4xlarge"|"ml.m5.xlarge"|"ml.m4.10xlarge"|"ml.r6i.xlarge"|"ml.m5.12xlarge"|"ml.m4.xlarge"|"ml.r7i.2xlarge"|"ml.r7i.xlarge"|"ml.r6i.12xlarge"|"ml.m5.24xlarge"|"ml.r7i.12xlarge"|"ml.m7i.8xlarge"|"ml.m7i.large"|"ml.r6i.24xlarge"|"ml.r6i.2xlarge"|"ml.m4.2xlarge"|"ml.r7i.24xlarge"|"ml.r7i.4xlarge"|"ml.m6i.8xlarge"|"ml.m6i.large"|"ml.m5.2xlarge"|"ml.p2.8xlarge"|"ml.r6i.4xlarge"|"ml.m6i.32xlarge"|"ml.p3.8xlarge"|"ml.m4.4xlarge",
instanceCount = 123
),
outputConfiguration = list(
accept = "string",
members = list(
list(
accountId = "string"
)
)
),
dataSource = list(
mlInputChannelArn = "string"
),
description = "string",
containerExecutionParameters = list(
maxPayloadInMB = 123
),
environment = list(
"string"
),
kmsKeyArn = "string",
tags = list(
"string"
)
)