Create Knowledge Base
bedrockagent_create_knowledge_base | R Documentation |
Creates a knowledge base¶
Description¶
Creates a knowledge base. A knowledge base contains your data sources so that Large Language Models (LLMs) can use your data. To create a knowledge base, you must first set up your data sources and configure a supported vector store. For more information, see Set up a knowledge base.
If you prefer to let Amazon Bedrock create and manage a vector store for you in Amazon OpenSearch Service, use the console. For more information, see Create a knowledge base.
-
Provide the
name
and an optionaldescription
. -
Provide the Amazon Resource Name (ARN) with permissions to create a knowledge base in the
roleArn
field. -
Provide the embedding model to use in the
embeddingModelArn
field in theknowledgeBaseConfiguration
object. -
Provide the configuration for your vector store in the
storageConfiguration
object.-
For an Amazon OpenSearch Service database, use the
opensearchServerlessConfiguration
object. For more information, see Create a vector store in Amazon OpenSearch Service. -
For an Amazon Aurora database, use the
RdsConfiguration
object. For more information, see Create a vector store in Amazon Aurora. -
For a Pinecone database, use the
pineconeConfiguration
object. For more information, see Create a vector store in Pinecone. -
For a Redis Enterprise Cloud database, use the
redisEnterpriseCloudConfiguration
object. For more information, see Create a vector store in Redis Enterprise Cloud.
-
Usage¶
bedrockagent_create_knowledge_base(clientToken, description,
knowledgeBaseConfiguration, name, roleArn, storageConfiguration, tags)
Arguments¶
clientToken
A unique, case-sensitive identifier to ensure that the API request completes no more than one time. If this token matches a previous request, Amazon Bedrock ignores the request, but does not return an error. For more information, see Ensuring idempotency.
description
A description of the knowledge base.
knowledgeBaseConfiguration
[required] Contains details about the embeddings model used for the knowledge base.
name
[required] A name for the knowledge base.
roleArn
[required] The Amazon Resource Name (ARN) of the IAM role with permissions to invoke API operations on the knowledge base.
storageConfiguration
Contains details about the configuration of the vector database used for the knowledge base.
tags
Specify the key-value pairs for the tags that you want to attach to your knowledge base in this object.
Value¶
A list with the following syntax:
list(
knowledgeBase = list(
createdAt = as.POSIXct(
"2015-01-01"
),
description = "string",
failureReasons = list(
"string"
),
knowledgeBaseArn = "string",
knowledgeBaseConfiguration = list(
kendraKnowledgeBaseConfiguration = list(
kendraIndexArn = "string"
),
sqlKnowledgeBaseConfiguration = list(
redshiftConfiguration = list(
queryEngineConfiguration = list(
provisionedConfiguration = list(
authConfiguration = list(
databaseUser = "string",
type = "IAM"|"USERNAME_PASSWORD"|"USERNAME",
usernamePasswordSecretArn = "string"
),
clusterIdentifier = "string"
),
serverlessConfiguration = list(
authConfiguration = list(
type = "IAM"|"USERNAME_PASSWORD",
usernamePasswordSecretArn = "string"
),
workgroupArn = "string"
),
type = "SERVERLESS"|"PROVISIONED"
),
queryGenerationConfiguration = list(
executionTimeoutSeconds = 123,
generationContext = list(
curatedQueries = list(
list(
naturalLanguage = "string",
sql = "string"
)
),
tables = list(
list(
columns = list(
list(
description = "string",
inclusion = "INCLUDE"|"EXCLUDE",
name = "string"
)
),
description = "string",
inclusion = "INCLUDE"|"EXCLUDE",
name = "string"
)
)
)
),
storageConfigurations = list(
list(
awsDataCatalogConfiguration = list(
tableNames = list(
"string"
)
),
redshiftConfiguration = list(
databaseName = "string"
),
type = "REDSHIFT"|"AWS_DATA_CATALOG"
)
)
),
type = "REDSHIFT"
),
type = "VECTOR"|"KENDRA"|"SQL",
vectorKnowledgeBaseConfiguration = list(
embeddingModelArn = "string",
embeddingModelConfiguration = list(
bedrockEmbeddingModelConfiguration = list(
dimensions = 123,
embeddingDataType = "FLOAT32"|"BINARY"
)
),
supplementalDataStorageConfiguration = list(
storageLocations = list(
list(
s3Location = list(
uri = "string"
),
type = "S3"
)
)
)
)
),
knowledgeBaseId = "string",
name = "string",
roleArn = "string",
status = "CREATING"|"ACTIVE"|"DELETING"|"UPDATING"|"FAILED"|"DELETE_UNSUCCESSFUL",
storageConfiguration = list(
mongoDbAtlasConfiguration = list(
collectionName = "string",
credentialsSecretArn = "string",
databaseName = "string",
endpoint = "string",
endpointServiceName = "string",
fieldMapping = list(
metadataField = "string",
textField = "string",
vectorField = "string"
),
vectorIndexName = "string"
),
opensearchServerlessConfiguration = list(
collectionArn = "string",
fieldMapping = list(
metadataField = "string",
textField = "string",
vectorField = "string"
),
vectorIndexName = "string"
),
pineconeConfiguration = list(
connectionString = "string",
credentialsSecretArn = "string",
fieldMapping = list(
metadataField = "string",
textField = "string"
),
namespace = "string"
),
rdsConfiguration = list(
credentialsSecretArn = "string",
databaseName = "string",
fieldMapping = list(
metadataField = "string",
primaryKeyField = "string",
textField = "string",
vectorField = "string"
),
resourceArn = "string",
tableName = "string"
),
redisEnterpriseCloudConfiguration = list(
credentialsSecretArn = "string",
endpoint = "string",
fieldMapping = list(
metadataField = "string",
textField = "string",
vectorField = "string"
),
vectorIndexName = "string"
),
type = "OPENSEARCH_SERVERLESS"|"PINECONE"|"REDIS_ENTERPRISE_CLOUD"|"RDS"|"MONGO_DB_ATLAS"
),
updatedAt = as.POSIXct(
"2015-01-01"
)
)
)
Request syntax¶
svc$create_knowledge_base(
clientToken = "string",
description = "string",
knowledgeBaseConfiguration = list(
kendraKnowledgeBaseConfiguration = list(
kendraIndexArn = "string"
),
sqlKnowledgeBaseConfiguration = list(
redshiftConfiguration = list(
queryEngineConfiguration = list(
provisionedConfiguration = list(
authConfiguration = list(
databaseUser = "string",
type = "IAM"|"USERNAME_PASSWORD"|"USERNAME",
usernamePasswordSecretArn = "string"
),
clusterIdentifier = "string"
),
serverlessConfiguration = list(
authConfiguration = list(
type = "IAM"|"USERNAME_PASSWORD",
usernamePasswordSecretArn = "string"
),
workgroupArn = "string"
),
type = "SERVERLESS"|"PROVISIONED"
),
queryGenerationConfiguration = list(
executionTimeoutSeconds = 123,
generationContext = list(
curatedQueries = list(
list(
naturalLanguage = "string",
sql = "string"
)
),
tables = list(
list(
columns = list(
list(
description = "string",
inclusion = "INCLUDE"|"EXCLUDE",
name = "string"
)
),
description = "string",
inclusion = "INCLUDE"|"EXCLUDE",
name = "string"
)
)
)
),
storageConfigurations = list(
list(
awsDataCatalogConfiguration = list(
tableNames = list(
"string"
)
),
redshiftConfiguration = list(
databaseName = "string"
),
type = "REDSHIFT"|"AWS_DATA_CATALOG"
)
)
),
type = "REDSHIFT"
),
type = "VECTOR"|"KENDRA"|"SQL",
vectorKnowledgeBaseConfiguration = list(
embeddingModelArn = "string",
embeddingModelConfiguration = list(
bedrockEmbeddingModelConfiguration = list(
dimensions = 123,
embeddingDataType = "FLOAT32"|"BINARY"
)
),
supplementalDataStorageConfiguration = list(
storageLocations = list(
list(
s3Location = list(
uri = "string"
),
type = "S3"
)
)
)
)
),
name = "string",
roleArn = "string",
storageConfiguration = list(
mongoDbAtlasConfiguration = list(
collectionName = "string",
credentialsSecretArn = "string",
databaseName = "string",
endpoint = "string",
endpointServiceName = "string",
fieldMapping = list(
metadataField = "string",
textField = "string",
vectorField = "string"
),
vectorIndexName = "string"
),
opensearchServerlessConfiguration = list(
collectionArn = "string",
fieldMapping = list(
metadataField = "string",
textField = "string",
vectorField = "string"
),
vectorIndexName = "string"
),
pineconeConfiguration = list(
connectionString = "string",
credentialsSecretArn = "string",
fieldMapping = list(
metadataField = "string",
textField = "string"
),
namespace = "string"
),
rdsConfiguration = list(
credentialsSecretArn = "string",
databaseName = "string",
fieldMapping = list(
metadataField = "string",
primaryKeyField = "string",
textField = "string",
vectorField = "string"
),
resourceArn = "string",
tableName = "string"
),
redisEnterpriseCloudConfiguration = list(
credentialsSecretArn = "string",
endpoint = "string",
fieldMapping = list(
metadataField = "string",
textField = "string",
vectorField = "string"
),
vectorIndexName = "string"
),
type = "OPENSEARCH_SERVERLESS"|"PINECONE"|"REDIS_ENTERPRISE_CLOUD"|"RDS"|"MONGO_DB_ATLAS"
),
tags = list(
"string"
)
)