Create Agent
bedrockagent_create_agent | R Documentation |
Creates an agent that orchestrates interactions between foundation models, data sources, software applications, user conversations, and APIs to carry out tasks to help customers¶
Description¶
Creates an agent that orchestrates interactions between foundation models, data sources, software applications, user conversations, and APIs to carry out tasks to help customers.
-
Specify the following fields for security purposes.
-
agentResourceRoleArn
– The Amazon Resource Name (ARN) of the role with permissions to invoke API operations on an agent. -
(Optional)
customerEncryptionKeyArn
– The Amazon Resource Name (ARN) of a KMS key to encrypt the creation of the agent. -
(Optional)
idleSessionTTLinSeconds
– Specify the number of seconds for which the agent should maintain session information. After this time expires, the subsequentInvokeAgent
request begins a new session.
-
-
To enable your agent to retain conversational context across multiple sessions, include a
memoryConfiguration
object. For more information, see Configure memory. -
To override the default prompt behavior for agent orchestration and to use advanced prompts, include a
promptOverrideConfiguration
object. For more information, see Advanced prompts. -
If your agent fails to be created, the response returns a list of
failureReasons
alongside a list ofrecommendedActions
for you to troubleshoot. -
The agent instructions will not be honored if your agent has only one knowledge base, uses default prompts, has no action group, and user input is disabled.
Usage¶
bedrockagent_create_agent(agentCollaboration, agentName,
agentResourceRoleArn, clientToken, customOrchestration,
customerEncryptionKeyArn, description, foundationModel,
guardrailConfiguration, idleSessionTTLInSeconds, instruction,
memoryConfiguration, orchestrationType, promptOverrideConfiguration,
tags)
Arguments¶
agentCollaboration
The agent's collaboration role.
agentName
[required] A name for the agent that you create.
agentResourceRoleArn
The Amazon Resource Name (ARN) of the IAM role with permissions to invoke API operations on the agent.
clientToken
A unique, case-sensitive identifier to ensure that the API request completes no more than one time. If this token matches a previous request, Amazon Bedrock ignores the request, but does not return an error. For more information, see Ensuring idempotency.
customOrchestration
Contains details of the custom orchestration configured for the agent.
customerEncryptionKeyArn
The Amazon Resource Name (ARN) of the KMS key with which to encrypt the agent.
description
A description of the agent.
foundationModel
The identifier for the model that you want to be used for orchestration by the agent you create.
The
modelId
to provide depends on the type of model or throughput that you use:If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide.
If you use an inference profile, specify the inference profile ID or its ARN. For a list of inference profile IDs, see Supported Regions and models for cross-region inference in the Amazon Bedrock User Guide.
If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide.
If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide.
If you use an imported model, specify the ARN of the imported model. You can get the model ARN from a successful call to CreateModelImportJob or from the Imported models page in the Amazon Bedrock console.
guardrailConfiguration
The unique Guardrail configuration assigned to the agent when it is created.
idleSessionTTLInSeconds
The number of seconds for which Amazon Bedrock keeps information about a user's conversation with the agent.
A user interaction remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Bedrock deletes any data provided before the timeout.
instruction
Instructions that tell the agent what it should do and how it should interact with users.
memoryConfiguration
Contains the details of the memory configured for the agent.
orchestrationType
Specifies the type of orchestration strategy for the agent. This is set to
DEFAULT
orchestration type, by default.promptOverrideConfiguration
Contains configurations to override prompts in different parts of an agent sequence. For more information, see Advanced prompts.
tags
Any tags that you want to attach to the agent.
Value¶
A list with the following syntax:
list(
agent = list(
agentArn = "string",
agentCollaboration = "SUPERVISOR"|"SUPERVISOR_ROUTER"|"DISABLED",
agentId = "string",
agentName = "string",
agentResourceRoleArn = "string",
agentStatus = "CREATING"|"PREPARING"|"PREPARED"|"NOT_PREPARED"|"DELETING"|"FAILED"|"VERSIONING"|"UPDATING",
agentVersion = "string",
clientToken = "string",
createdAt = as.POSIXct(
"2015-01-01"
),
customOrchestration = list(
executor = list(
lambda = "string"
)
),
customerEncryptionKeyArn = "string",
description = "string",
failureReasons = list(
"string"
),
foundationModel = "string",
guardrailConfiguration = list(
guardrailIdentifier = "string",
guardrailVersion = "string"
),
idleSessionTTLInSeconds = 123,
instruction = "string",
memoryConfiguration = list(
enabledMemoryTypes = list(
"SESSION_SUMMARY"
),
sessionSummaryConfiguration = list(
maxRecentSessions = 123
),
storageDays = 123
),
orchestrationType = "DEFAULT"|"CUSTOM_ORCHESTRATION",
preparedAt = as.POSIXct(
"2015-01-01"
),
promptOverrideConfiguration = list(
overrideLambda = "string",
promptConfigurations = list(
list(
basePromptTemplate = "string",
foundationModel = "string",
inferenceConfiguration = list(
maximumLength = 123,
stopSequences = list(
"string"
),
temperature = 123.0,
topK = 123,
topP = 123.0
),
parserMode = "DEFAULT"|"OVERRIDDEN",
promptCreationMode = "DEFAULT"|"OVERRIDDEN",
promptState = "ENABLED"|"DISABLED",
promptType = "PRE_PROCESSING"|"ORCHESTRATION"|"POST_PROCESSING"|"KNOWLEDGE_BASE_RESPONSE_GENERATION"|"MEMORY_SUMMARIZATION"
)
)
),
recommendedActions = list(
"string"
),
updatedAt = as.POSIXct(
"2015-01-01"
)
)
)
Request syntax¶
svc$create_agent(
agentCollaboration = "SUPERVISOR"|"SUPERVISOR_ROUTER"|"DISABLED",
agentName = "string",
agentResourceRoleArn = "string",
clientToken = "string",
customOrchestration = list(
executor = list(
lambda = "string"
)
),
customerEncryptionKeyArn = "string",
description = "string",
foundationModel = "string",
guardrailConfiguration = list(
guardrailIdentifier = "string",
guardrailVersion = "string"
),
idleSessionTTLInSeconds = 123,
instruction = "string",
memoryConfiguration = list(
enabledMemoryTypes = list(
"SESSION_SUMMARY"
),
sessionSummaryConfiguration = list(
maxRecentSessions = 123
),
storageDays = 123
),
orchestrationType = "DEFAULT"|"CUSTOM_ORCHESTRATION",
promptOverrideConfiguration = list(
overrideLambda = "string",
promptConfigurations = list(
list(
basePromptTemplate = "string",
foundationModel = "string",
inferenceConfiguration = list(
maximumLength = 123,
stopSequences = list(
"string"
),
temperature = 123.0,
topK = 123,
topP = 123.0
),
parserMode = "DEFAULT"|"OVERRIDDEN",
promptCreationMode = "DEFAULT"|"OVERRIDDEN",
promptState = "ENABLED"|"DISABLED",
promptType = "PRE_PROCESSING"|"ORCHESTRATION"|"POST_PROCESSING"|"KNOWLEDGE_BASE_RESPONSE_GENERATION"|"MEMORY_SUMMARIZATION"
)
)
),
tags = list(
"string"
)
)