Skip to content

Get Custom Model

bedrock_get_custom_model R Documentation

Get the properties associated with a Amazon Bedrock custom model that you have created

Description

Get the properties associated with a Amazon Bedrock custom model that you have created.For more information, see Custom models in the Amazon Bedrock User Guide.

Usage

bedrock_get_custom_model(modelIdentifier)

Arguments

modelIdentifier

[required] Name or Amazon Resource Name (ARN) of the custom model.

Value

A list with the following syntax:

list(
  modelArn = "string",
  modelName = "string",
  jobName = "string",
  jobArn = "string",
  baseModelArn = "string",
  customizationType = "FINE_TUNING"|"CONTINUED_PRE_TRAINING"|"DISTILLATION",
  modelKmsKeyArn = "string",
  hyperParameters = list(
    "string"
  ),
  trainingDataConfig = list(
    s3Uri = "string",
    invocationLogsConfig = list(
      usePromptResponse = TRUE|FALSE,
      invocationLogSource = list(
        s3Uri = "string"
      ),
      requestMetadataFilters = list(
        equals = list(
          "string"
        ),
        notEquals = list(
          "string"
        ),
        andAll = list(
          list(
            equals = list(
              "string"
            ),
            notEquals = list(
              "string"
            )
          )
        ),
        orAll = list(
          list(
            equals = list(
              "string"
            ),
            notEquals = list(
              "string"
            )
          )
        )
      )
    )
  ),
  validationDataConfig = list(
    validators = list(
      list(
        s3Uri = "string"
      )
    )
  ),
  outputDataConfig = list(
    s3Uri = "string"
  ),
  trainingMetrics = list(
    trainingLoss = 123.0
  ),
  validationMetrics = list(
    list(
      validationLoss = 123.0
    )
  ),
  creationTime = as.POSIXct(
    "2015-01-01"
  ),
  customizationConfig = list(
    distillationConfig = list(
      teacherModelConfig = list(
        teacherModelIdentifier = "string",
        maxResponseLengthForInference = 123
      )
    )
  )
)

Request syntax

svc$get_custom_model(
  modelIdentifier = "string"
)